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The possibility is explored of obtaining structural information from the moir6-like patterns observed 
in electron micrographs of overlapping thin crystals. General expressions are derived for the ampli- 
tude distribution in any plane of observation following two thin crystals. I t  is shown that in certain 
special cases this amplitude distribution approximates to the convolution of the projections of the 
potential distributions of the two crystals. Structural information may be derived from such a con- 
volution function. Methods are indicated for determining how the resolution obtainable depends on 
the thickness of the crystals, their separation and mutual orientation. 

1. In troduct ion  

In recent years many observations have been made 
of moir6-1ike fringe in electron microscope images of 
overlapping crystals. Some account of these observa- 
tions and of the theory due to Farrant  & Rees (1956) 
of their origin, has been included in the review article 
by Cowley & Rees (1958). 

The most frequent observation is tha t  the region in 
which appropriately oriented crystals overlap is 
crossed by a set of parallel equidistant fringes. Each 
crystal is then acting as a diffraction grating periodic 
in one direction only since it is sufficiently thick and 
so oriented tha t  only one strong diffracted beam is 
produced. In such cases the scattering is almost 
certainly dynamic, rather than kinematic. The inten- 
sity distribution of the fringes then bears no direct 
relationship to the lattice structure and Cowley (1959) 
and Hashimoto, Naiki & Mannami (1958) have shown 
tha t  bending or changes of thickness of the crystals 
can give rise to distortion, changes of spacing and 
stepped structures in the fringes. 

When each crystal gives a number of reflections 
simultaneously the several sets of fringes may com- 
bine to give a pat tern periodic in two dimensions. 
In  the case of very thin crystals, the diffraction pat- 
tern of each will approximate to the Fourier transform 
of a projection of the potential distribution of the 
crystal lattice. Then the resulting two-dimensionally 
periodic pat tern may  be related to the crystal struc- 
ture and could conceivably be used to obtain informa- 
tion about the structure. Dowell, Farrant  & Rees 
(1956) showed tha t  in certain limiting cases the pat- 
tern may  represent the Patterson function of the 
crystal projection. 

A more general and detailed theoretical s tudy is 
required in order to explore more fully the possibilities 
of obtaining structural information in this way and to 
determine the experimental requirements for their 
realization. For this purpose the formulation of 

physical optics of Cowley & Moodie (1958, hereafter 
referred to as I) is ideally suited. Successive scattering 
by  two crystals may  be treated by  a simple extension 
of the methods used in considering the formation of 
Fourier images by single planar periodic objects 
(Cowley & Moodie, 1957a, b, c). 

In  this paper we apply the methods of I to the case 
of electrons scattered successively by two thin crystals 
since this appears to include the practical cases of 
greatest immediate interest. I t  will be apparent,  
however, tha t  the t reatment  applies equally well to 
other forms of radiation and the appropriate periodic 
phase objects; for example, visible light and trans- 
parent optical diffraction gratings. Only minor changes 
of an obvious nature, are required to include cases of 
amplitude gratings and the well-known geometric 
moir6 effects. 

We assume coherent radiation from a point source. 
The way in which the results are modified when the 
source is of finite extent or of imperfect coherence 
may  be inferred by comparison with the case of the 
single periodic object (Cowley & Moodie, 1957c) or 
may be calculated in detail by the methods used by 
Cowley & Moodie (1959a). 

2. The  point  source  and two  th in  crys ta l s  

As shown by Cowley & Moodie (1957d), if a crystal is 
so thin tha t  Fresnel diffraction effects within it may  
be neglected (less than  a few hundred A for 50 kV. 
electrons), it acts as a phase grating, modifying an 
incident electron wave by multiplying the wave func- 
tion by 

q(x, y) = exp {i~(z,  y)}, (1) 

where (~ = ~/,~Wo. Wo is the accelerating potential, 
and 

~(x, y) -- ~(x, y, z) dz,  
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i.e., ~(x, y) is the projection in the direction of the 
electron beam, the z-direction, of the potential 
distribution of the crystal. 

The small amplitude-grating effect given by the 
inelastic scattering density function Z(x, y), could be 
included by making ~(x, y) complex without affecting 
the arguments, but will be ignored here. 

The projected potential distributions of the two 
crystals may be represented by the Fourier series 

hl kl ( Vl al 

= + . ( 2 )  

The implied assumption tha t  the a and b axes for 
both crystals are parallel to axes of coordinates does 
not involve any loss of generality since whatever the 
shape or orientation of the unit cells, the structures 
may  be described in terms of lattice axes parallel to 
the axes of coordinates with any required degree of 
accuracy by making the a and b sufficiently large. 

The function q~(x, y), representing the effects of 
the distribution ~ (x, y) in the wave function, is like- 
wise periodic and can be written 

ql(~, y ) :  Z~.~E;(hl,]~l) exp{-2F~i( nix + (3) 

and similarly q~ (x, y) has Fourier coefficients E~ (h e, kz). 
:Because of the ease of manipulation of 0-functions, 
we choose to work with the Fourier transforms of these 
functions : 

= ~ _ , r  E~(hl, k~).6 (~ 2~h~ 27~k~1 
a, ~, aa, ' U--b-~- ]"  (4) 

We consider the system shown in Fig.  1, where the 
distance from the source to the first crystal is R1, 
the distance between crystals is R~ and the plane of 
observation is a distance R from the second crystal. 

q, (x,y) % (x,y) y (x,y) 

Fig. 1. The disposition of components and 
the notation used. 

From the general expression, equation (3, 4) of I, 
i t  follows tha t  the amplitude distribution on the plane 
of observation is then given by 

~+kR~(x2+Y~)[ {ik(x~+y~)[1 
× exp [ ~ ] ,  exp ~ ] j  . (5) 

For a point source, represented by a 6-function at 
the origin of coordinates, we have 

Q0 R ' = 1 . 

Substituting the expressions for Qa and Q2 from (4) 
and evaluating the convolutions in (5) then gives 

v2(x, y) = K ' 2  Z ~ Z E;(h~, kl).E~(h 2, lc2) 
hl kl h2 k2 

× exp { -  giaR1 (.R +Re) {~  ~ 

× exp - (R+R~+R2) \a~+b~]] 

× - - - } -  
tg + Ra + R2 \aa a2 ba b2] J 

× e x p { -  27d [ +/~2) ( h2x- 
R+Ra +R 2 L (R1 \ as 

+ Ra (h~x+ 
\ a] 

+ b~.] 

+ 

The first three exponential terms of this expression 
may be regarded as 'focussing' terms, similar to those 
occurring in the theory of Fourier image formation by 
single crystals (Cowley & Moodie, 1957a). The con- 
dition that  the first of these terms should be unity is 

R~ (R2 -+- _/~ ) 2na,~ 2mb~ 
- ( 7 )  

• + R I + R  2 2 2 ' 

where n and m are integers. This is the condition that  
an 'in focus' magnified or demagldfied image of the 
first crystal should appear on the plane of observation. 
The second term similarly relates to the 'focussing' 
of a Fourier image of the second crystal on the plane 
of observation. 

The third exponential term contains the interaction 
of waves scattered by both crystals and introduces an 
additional condition for focus 

.RR I 2paj a s 2qb 1 b 2 

R+RI+R~ 2 2 ' 

where p and q are integers. 
There is thus a total of six conditions for focus which 

cannot, in general, be satisfied exactly for any values 
of the distances R~, R e and/~ except for the particular 
case R = ~2 = 0. In principle, by choosing the integers 
m, n, p, q, etc. sufficiently large the conditions may be 
satisfied to any desired degree of approximation but 
the distances involved may then prove impracticable. 
Exact  focus may be obtained readily when the unit- 
cell dimensions are simply related, e.g., if a 1 = as, 
b 1 = b e and .Na 2 = Mb 2, N and M being integers, or 
if Pa 1 = Qa~ = tlb a = Sb2, where P,  Q, R and S are 
integers. 

A case of particular interest is tha t  for which R -- 0 
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i.e., when, for example, an electron microscope is 
focussed on the plane of the second crystal. The equa- 
tion (6) then reduces to 

to(x, y) = Kr .~  v v ~.y 2=" E;(h~, kl) .E~(h 2, k~) 
hi kl h2 k2 

× exp (RI+R2) \a~ 

X exp{-2y'(,iI.R1R1.R2(h]x'Ay al bl ] 

+ . (8 )  

Only one focussing condition, namely (7), then re- 
mains. This is the condition tha t  the second crystal 
lies in the plane of an in-focus Fourier image of the 
first crystal. 

If all focussing conditions are satisfied, the expres- 
sions (6) and (8) represent the product of two trans- 
mission functions, appropriately scaled, of periodic 
phase objects. The function t0(x, y) then has a modulus 
equal to a constant. The intensity distribution is 
uniform, with no contrast due to the crystal lattice 
structures. Appreciable contrast may  be generated in 
two ways: by restricting the aperture of the observing 
system, or by going out of focus. The out-of-focus 
images will in general have intensity distributions 
which are very complicated and difficult to interpret. 
I t  can be shown tha t  in the limiting case of very small 
defect of focus the intensity distribution may be 
interpreted readily but then no moir6-1ike effects can 
be observed (Cowley & Moodie, to be published). 

3. Effect of a l imited aperture in 
the obse rv ing  system 

For convenience we now consider equation (8) for 
which R = 0. If we include the focussing term in- 
volving h~ and k~ in E l(h 1, kl) and include the magnifi- 
cation term RJ(RI+Rg. )  in the a 1 and b 1, we get the 
multiplication of two Fourier series which can be 
writ ten in vector form as 

to(x, y) = K ' 2 . . ~  G(h) .G' (h ' )  exp { 2 z i ( h + h ' ) . r )  (9) 
h h r 

where h = ha*+kb* ,  h ' =  h ' a ' *+k 'b ' * ,  and a * , b *  
and a'*, b '* are the unit-cell axes of the reciprocal 
lattices of the two functions and correspond to the 
real unit-cell axes a, b and a' ,  b '  which, in general, 
are neither equal nor parallel. 

The general equation (6) can be reduced to the same 
form if all focussing term are unity. 

The unit-cell origins of the two lattices will coincide, 
to a given approximation, only at a set of points which 
may be widely spaced relative to the unit-cell dimen- 
sions. These points will be disposed periodically and 
so will define a superlattice with unit-cell vectors 

A = p a + q b  = f f a ' + q ' b ' ,  [ 
B = r a + s b  = r ' a ' + s ' b ' ,  / (10) 

where p, q, r, s, p', q', r '  and s' are integers. 
The vectors in two-dimensional reciprocal, or 

Fourier transform space, corresponding to A and 
B are then A* and B* defined by the relations 
A* = (B × C)/]A × B I and B* = (C × A)/IA x BI, where 
the C axis is taken to be of unit length and in the 
direction of A × B. 

:By using the analogous relations between a, b and 
a*, b* we then obtain 

A * =  ( s a * - r b * ) / ( p s - r q ) =  ( s ' a ' * - r ' b ' * ) / ( p ' s ' - r ' q ' )  , 

B* = ( - q a * + p b * ) / ( p s - r q )  
= ( - q ' a ' * + p ' b ' * ) / ( p ' s ' - r ' q ' ) .  (11) 

I t  is possible to choose indices H, K such tha t  

H = H A * + K B *  = h + h ' .  (12) 

The vector so defined then gives the position of the 
point in reciprocal space corresponding to a twice- 
diffracted beam. 

Except  in the case of phthalocyanines and a few 
other crystals with strongly diffracting planes having 
spacings of 10/~ or more, even the grosser features of 
crystal lattice structure have not yet  been resolved 
by electron microscopes. The aberrations of the 
objective lens prevent the coherent recombination of 
the diffracted beams with the undiffraeted beam. The  
effect is approximately tha t  of placing an aperture in 
the back-focal plane of an ideal objective lens to re- 
move all of the diffraction pat tern except for a small 
region around the central spot. None of the singly 
diffracted beams may pass through this aperture but  
some doubly diffracted beams may do so. 

Hence we consider tha t  only those electron beams 
corresponding to points near the reciprocal lattice 
origin contribute to the image. We limit H to an area 
around the origin not greater than tha t  of the re- 
ciprocal lattice unit cell of either crystal, i.e., 

]H.a*] <½1a*]2; ]H.a'*l <½1a'*12; } 
IH.b*] < ½]b*12; IH.b'*] < ½1b,,i2. _ (13) 

I t  can readily be seen that ,  if the reciprocal lattice 
of one crystal is laid down with its origin displaced 
to coincide with any point of the reciprocal lattice 
of the other crystal, not more than one reciprocal 
lattice point from the first crystal will fall within the 
region defined by (13). Hence for this region there is 
a one-to-one correspondence between the possible 
values of h, h '  and H. 

The double summation in (9) then reduces to a 
single summation 

to'(x, y) -- 2~ G(h).G'(h ' )  exp {2~i (H. r )} ,  (14) 

where h '  and H may be expressed in terms of h. 

29*  
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This equation has a particularly interesting inter- 
pretation when the dimensions of the Fourier images 
of the two crystals are so related that  the value of 
h'  associated with h is h, i.e., when h' = -h , /c '  = - k .  

Then H = h + h '  = h ( a * - a ' * ) + k ( b * - b ' * ) ,  so that  

H = h ,  } A * = a * - a ' * ,  } (15) 
K = k ,  B* = b * - b ' * ,  

and equation (14) becomes 

t0'(x, y) = ~" G(H, K) .  G ' ( - H ,  - K )  exp {2~i(H. r)}. 

H (16) 

This represents the convolution of the two functions 
describing the Fourier images of the two crystals, 
related to the periodic lattice defined by the vectors 
A and B. In particular, if the focussing term of the 
equation (8) is unity, the convolution becomes 

to'(x, y) = q~(X, Y ) .  q ~ ( - X ,  - Y) , (17) 

where the coordinates X and Y are used to indicate 
that  there is a change of scale, and the relative lengths 
and orientations of the axes have been changed. 

In the particular case that  the two crystals are 
identical, t0'(x, y) becomes the suitably scaled Patter- 
son function of ql (x, y) = exp {iaq~(x, y)}. I t  has been 
shown by Cowley & Moodie (1959b) that the Patterson 
function becomes identical with the kinematic Patter- 
son function, P(x,  y) = a2~(x, y) . 9 ( - x ,  -y ) ,  except 
for a constant term, in the limiting case of zero thick- 
ness and that  for the range of thickness considered 
here it is related to the kinematic Patterson function 
in a relatively simple way. Similarly it may be argued 
that  the convolution (17) represents an approximation 
to the kinematic convolution q h ( x , y ) ,  q~2(-x,--y) 
and deviates from this kinematic form in a qualita- 
tively predictable way with increasing thickness. 

The conditions under which such magnified convolu- 
tion functions may be observed are obtained from the 
equations (13) by inserting the restrictions (15) to give 

IH{la*l~--(a*.a'*)}+K{(a*.b*)--(a*.b'*)}] < ½[a*l ~ 
[ H { ( a * . b * ) - ( a ' * . b * ) } + K { l b * l ~ - ( b ' * . b * ) } l  < ½15"13 

and so on. 
Applying the relationships between reciprocal lat- 

tice vectors in equation (11) leads to four equations 
of the type 

\ p s - q r  / 

,/(a*.b*) (1 
+K( la,l~. 

[a*] ~' \ p s - q r  / )  

p s ' - r q '  I s q ' - q s '  ! ' 
ps--qr) pNZqr j < ~" (iS) 

In particular, if the unit cells are rectangular so that  
terms of the type (a*.b*) are zero, we get 

K = 0 ,  

and 

ps-qr / ~ p--~--~V/i< ½' 

- H ( P r ' - r P '  I + K ( 1  P s ' - q ' r  I - - - -  < ½ (19) 
\ p s - q r  / p s - q r /  ' 

and analogous expressions with (p 's ' -q 'r ' )  in the 
denominators. These expressions limit the range of 
H and K values, and so determine the number of 
terms of the Fourier series (16) which are included. 
In order that  the convolution function should be 
resolved as well as possible, therefore, it is necessary 
that  equations (19) should be satisfied by Hmax. and 
Kmax. which are the maximum values of the indices 
of spots in the diffraction pattern of either crystal 
for which the spot intensities are appreciable. 

An indication of the number of terms of the series 
(16) obtained for any particular set of constants, 
p, q, r, s, p', q', r', s', or of the relative magnitudes of 
these constants required for a given resolution in the 
convolution image, may be obtained by considering 
the limitation of the diffraction pattern in the direc- 
tions of the axes. 

For example, when 

p s - q r  ] (20a) 
]H[ < ½ ( p - p ' ) s - ( r - r ' ) q !  

and when 

H = 0, 

and 

IH ] < ½ i p s - q r  (20b) 
r p ' - p r '  l: 

[K I < ½1 p s - q r  
: ( s - s ' ) p - ( q - q ' ) r  

(20c) 

[K] < ½ P s - q r  i (20d) 
q's -- s'q 

and similar inequalities hold when the primed and 
unprimed constants are interchanged. 

4. Examples  and applications 
(a) Identical crystals superimposed with rotation 

We consider first the case of identical crystals with 
rectangular unit cells, so thin that  when they are 
placed in contact we may take R 2 = 0. This is a good 
approximation if the crystal thickness is less than the 
spacing between Fourier images for a sinusoidal 
grating with periodicity drain, corresponding to an 
outer spot of the diffraction pattern 

i.e., R~ < d~in.A. 

For example, if d = 2 A, /t = 0.05 • the distance 
between crystal centres must be less than 80 A. 

If one of these crystals is rotated with respect to 
the other through a small angle, the origins of unit 
cells of the two crystals will coincide at points of a 
'superlattice' defined by the axes 
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A = pa+qb  
B = r a + s b ,  

wherever integers p, q, r, s, can be found such that  

Pq 
- - =  -b2 /a  2 . 
r 8  

If an electron microscope of limited aperture is focussed 
on a Fourier image plane of the crystals (the R = 0 
case being included as the zero-order Fourier image) 
the amplitude in the plane of observation is given by 
q~ (X, Y) . q l ( - X ,  - Y),  which, for very thin crystals, 
represents the Patterson function of the potential 
distribution function, magldfied by a factor of 
IA[/[a] = [B1/[b [ = (p2a~+qgb2)½/a. For example, if 
p =  100, q =  1, r = - l ,  s =  100 (and p ' =  100, 
q' = - 1 ,  r' = 1, s' = 100), the Patterson function of 
the crystal projection will be observed with a unit cell 
approximately 100 times as large as the crystal lattice 
unit cell. The number of possible terms in the summa- 
tion of (16) is indicated by the equations (20), from 
which we obtain ]H I < 50, ]K1 < 50. 

(b) Parallel identical crystals held apart 

If the lattice axes of the crystals are exactly parallel 
but the crystals are separated by a distance R~ such 
that  one crystal lies on a Fourier image plane of the 
other, then ql(x, y) and q~.(x, y) will be identical 
except for a scale factor. The superlattice unit cell is 
defined by the vectors A = p a - -  (p+ l )a '  and B = 
pb = (p+ l )b '  i.e., s = p ,  q = r  = q '  = r' = 0 ,  p ' =  
s' = p + l .  

Equation (16) becomes 

~v' (x, y) = .~, G(H, K ) .  G ( - H ,  - K )  
H 

\ pa 

which approximates to the Patterson function of the 
crystal potential distribution with unit-cell dimensions 
magnified p times. The condition that  one crystal lies 
on a Fourier image plane of the other gives 

p + 1 R 1 + R 2 R2~t 

P R1 2na 9 • 
Hence 

p = R1/R9 = 2nag~ ( R g ~ - 2 n a  ~) . 

For example, for a =  10 A, ~t=0.05 A and R 1 = 
0.1 cm., n = 5 gives R~. = 2 × 10 -a cm., and the mag- 
nification, p = 500. 

If now one of the crystals is rotated through a small 
angle with respect to the other a combination of the 
effects (a) and (b) will be observed and by suitable 
adjustment of the parameters convolution functions 
with various magnifications may be obtained. In 
particular for R~ infinite so that  the crystals are 
illuminated by parallel irradiation, the Fourier image 

of one in the plane of the other will have unit mag- 
nification and consequently only the effect of the 
mutual rotation of the crystals remains. Magnified 
convolution functions are then observed exactly as 
in (a). 

(c) Isomorphous crystals 

Isomorphous replacement of one of the component 
atoms by another type of atom in a crystal structure 
frequently leads to very small differences in the unit- 
cell dimensions and the atomic positions. When two 
crystals which differ in this way are superimposed, 
the difference in unit-cell dimensions may be sufficient 
to produce a convolution function image visible in an 
electron microscope. In any case a convolution func- 
tion image may be produced by a suitable rotation of 
one crystal or a separation of the crystals. If the 
potential distribution functions are represented by 
~1 (x, y) and ~.(x, y) = ~l (x, y)+ q~" (x, y), the convolu- 
tion function has the limiting form 

[~l(x, y ) .  ~ l ( - x ,  -y ) ]  + [~(x,  y ) .  ~0"(-x, - y ) ] .  (21) 

The first term represents the Patterson function 
image given when both crystals have the structure 
~1 (x, y). If this image is recorded and subtracted from 
the image (21) the difference gives the second term of 
(21). This second term may give an indication of the 
crystal structure. For example, if the crystals differ 
only in the replacement of a single light atom by a 
heavy atom, q~"(x, y) will contain only one peak per 
unit cell and the second term of (21) will reduce to 
~l(x, y), modified by a broadening of the peaks. 
Under these circumstances an image of the crystal 
structure can be deduced directly from electron micro- 
scope observations. 

(d) Crystals of known and unknown  structure 

In general, if the structure of a crystal is unknown 
except for the unit-cell dimensions, it should be 
possible to choose a crystal of known structure such 
that  when the crystal of unknown structure is placed 
suitably with respect to it, an electron microscope 
image of the convolution function, ~1 (x, y ) .  q%.(-x,-Y) 
will be observable. This convolution function may then 
be analysed by the method of image-seeking frequently 
used in structure analysis by X-ray and electron 
diffraction methods for the interpretation of Patterson 
maps (Lipson & Cochran, 1953). The atomic positions 
of the known crystal structure may be used as the set 
of image-seeking points to obtain an approximate 
structure for the unknown crystal. 

5. Discuss ion  

The finite size of the electron sources used in electron 
microscopy is not a serious limiting factor in the 
resolution obtainable in the convolution images. This 
resolution depends on the resolution of the individual 
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Fourier images of the two crystals. In our paper 
dealing with the effects of finite source size in the 
Fourier images of a grating (Cowley & Moodie, 1957c) 
it is shown that the least resolvable distance in a 
Fourier image, referred to the scale of the crystal 
lattice is approximately A = Ra/(R+Rq) where a is 
the source diameter, Rq is the distance from source to 
grating and R is the distance from grating to the plane 
of observation. Since in the present application it is 
not necessary to work with Fourier images of ap- 
preciable magnification, the ratio of Rq to R can be 
made large. In particular, if the electron microscope 
is focussed on the second crystal there is virtually no 
restriction on source size if the first crystal is con- 
sidered sufficiently close so that one can take R~ = 0. 
If the crystals are separated by a distance of the order 
of a micron, and the convolution image is produced 
by rotation or difference of unit-cell dimensions rather 
than by obtaining a magnified Fourier image, the sources 
commonly used are adequate. For example, with 
R = R e = 1/~, "~1 = Rq = 20 cm. and a = 20/~, the 
least resolvable distance, referred to the scale of the 
crystal  lattice is 1 _~. 

If  the source is brought close to the crystals in order 
to obtain a magnif ied image of one crystal on the other, 
as in 4(b) above, a smaller source must  be used. For 
example,  in the case cited in 4(b), where R 1 = 0.1 cm., 
R~ = 2 × 10 -4 cm., a resolution of 1 A is given by a 
source of diameter  500 /~. 

We have considered in detail  only the relat ively 
simple cases for which at least two of the three 
focussing terms in the equation (6) are equal to unity.  
In  general equation (6) can not  be reduced to the form 
(9) or expressed as a convolution. The interpreta t ion 
of pat terns  obtained with appreciable defect of focus 
would therefore be very  difficult. 

The theoretical t rea tment  here applied to the case 
of two th in  crystals can be extended without  difficulty 
to deal with the cases of three, four or more th in  
crystals, or, in fact, a rb i t ra ry  assemblies of periodic 
or non-periodic objects including perfect thick crystals 
(Cowley & Moodie, 1957d). We defer discussion of 
these matters except to notice the interesting pos- 
sibility that with three crystals suitably related the 
magnified image formed from the central part of the 
diffraction pattern may take the form 

y/(x, y) = ql(x, y ) ,  q~ (x, y ) ,  % (x, y) . 

This could occur, for example,  if the first two crystals 
were identical  and gave a pa t te rn  of doubly diffracted 
spots which almost  coincides with the spots of the 
p r imary  diffraction pa t te rn  of the th i rd  crystal. The 
magnif ied image would then approximate  to an image 

A N D  I M A G I N G  EFFECTS 

of the th i rd  crystal lattice, since in the Pat te rson  
funct ion the origin peak is usual ly  much  higher  t h a n  
any  other. However, i t  should be noted tha t  the 
restrictions on the distances between, and relat ive 
rotations of, the three crystals would be much  more 
severe than  in the case of two crystals, and the image 
in tens i ty  would be very  much  less. The use of three 
crystals in this way is, therefore, scarcely a pract ical  
proposition. 

The experiments  of Dowell, Fa r ran t  & Rees (1956) 
and others confirm our conclusions that ,  for the  two- 
crystal case, the electron optical requirements  m a y  be 
met  with conventional  electron microscopes. The 
principal exper imental  difficulties in the observat ion 
of the convolution images are the preparat ion and  
manipula t ion  of suitable crystals. The crystal thickness 
must  be very  small, of the order of a hundred  ~_ng- 
strSms, and the diameter  of the crystals mus t  be 
sufficient to allow at least one, and preferably m a n y  
uni t  cells of the convolution image to be observed i.e., 
thousands of •ngstrSms. Unless one relies on the 
chance observation of two crystals lying together with 
a suitable relative orientation, manipula t ion  of one 
crystal is required with an accuracy of a fraction of 
a micron in t ranslat ion and a fraction of a degree in 
rotation. 
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